GREEN AND ENVIRONMENT AUDIT REPORT

MANGALDAI COLLEGE

PREPARED BY

GREEN AUDIT TEAM MANGALDAI COLLEGE MANGALDAI, ASSAM 2023

CONTENT

Foreword

- 1. Introduction
- 2. Concept and Need of Green Audit in Higher Educational Institutions.
- 3. Criteria 7 of NAAC Assessment and Importance of Green Audit:
- 4. Vision of the college
- 5. Mission of the college
- 6. Environmental Policy of Mangaldai College
- 7. Environmental Policy Statement of Mangaldai College
- 8. Policy Objectives
- 9. Objectives of Green Audit
 - a. Land Use Pattern and Green Cover
 - b. Quality of drinking water
 - c. Assessment of sound pollution
 - d. Soil composition and properties
 - e. Air quality of the campus
 - f. Floral and faunal diversity of the campus
 - g. Safety and Security of the Campus
 - h. Waste management
 - i. Human health and safety management
 - j. Green initiatives of the college
- 10. Recommendations:
- 11. Photo Gallery

Annexure

Green Audit Team

S	Name	Designation	Rule & Responsibilities
1.		_	-
Ν			
0			
1	Dr. Pranjit Kumar Sarma	Assistant Professor	Convener
2	Prof. Ashok Kumar Bora	Professor, Gauhati University	External Expert, Gauhati University
3	Dr. Jaideep Baruah	Director, ASTEC	External Expert
4	Dr. Pankaj Ghosh	Assistant Professor	Member
5	Ms. Deepa Pradhan	Assistant Professor	Member
6	Mr. Bikash Rabha	Assistant Professor	Member
7	Dr. Ananya Phukan	Assistant Professor	Member
8	Dr. Kuntala Sarma Bordoloi	Assistant Professor	Member
9.	Mr. Jayanta Sahariah	Scientist, Assam Pollution	Member
		Control Board	

<u>Foreword</u>

The global natural environment is undergoing rapid changes due to intense anthropogenic pressures. Issues such as climate change, deforestation, sea level rise, and glacier melting are escalating at an alarming rate, posing significant threats to biodiversity, climate stability, and overall environmental sustainability. With the global human population surpassing 8 billion, there is a corresponding increase in the exploitation of natural resources, exerting immense pressure on the environment. The Indian sub-continent, experiencing alarming population growth, is also witnessing severe environmental impacts.

In this context, higher educational institutions play a crucial role in conserving the natural environment through practical and effective measures. Mangaldai College, situated in the Darrang district and established in 1951, stands as a premier higher education institute in Assam. Since its inception, the college has been actively involved in nature and natural resource conservation. Initiatives such as extensive plantation drives, utilization of solar energy, provision of clean drinking water, maintaining a tobacco-free and plastic-free campus, and implementing waste management practices reflect the college's commitment to environmental preservation.

Moreover, the college has undertaken awareness campaigns to educate students and other stakeholders about the importance of nature conservation and sustainable development. Recognizing the significance of a green audit—a systematic and scientific approach to understanding the relationship between resource utilization and waste generation—the Mangaldai College has initiated a green audit to assess eco-friendly and non-eco-friendly practices within the campus. This report aims to provide insights that will motivate and guide all stakeholders in moving towards a sustainable and environmentally conscious future.

Kamala Kanta Borah ^{Digitally signed by} ^{Kamala Kanta Borah} Date: 2024.02.05 14:22:47 +05'30'

Principal Mangaldai College

1. <u>Introduction:</u>

Mangaldai College, situated on the northern bank of the formidable Brahmaputra River in central Assam, stands as a distinguished Higher Educational Institute in the Darrang District. Affiliated to Gauhati University, the college offers a comprehensive educational experience encompassing Science, Arts, and a skill-based Bachelor of Vocational (B.Voc.) Programme.

Established in 1951 by forward-thinking citizens, Mangaldai College has evolved into a prominent higher education institution within the district. Its growth is attributed to the dedicated efforts of the administration, faculty, students, and various stakeholders. The college, with an annual enrolment exceeding 3000 students, hosts twenty departments providing twenty-two undergraduate degree programs, including selfsustaining options, and a postgraduate program in Assamese. Additionally, the institution offers several certificate courses for academic enrichment.

Covering 33.33 acres, the college boasts a lush green environment, with over 50% of the area under green cover. Striving for academic excellence and character integrity, the institution aims to provide the best academic, sporting, and cultural facilities for the holistic development of its students. Embracing a decentralized governance model, Mangaldai College encourages the active participation of all stakeholders to foster an environment conducive to knowledge, research, skill development, and humanitarian values.

Accredited by NAAC in September 2018 for the second cycle, the college continually works towards enhancing its quality. It remains committed to inclusivity by providing higher education access to economically and socially disadvantaged sections of society. Mangaldai College engages in various events, observes important days, conducts awareness programs, and contributes to community service in areas such as sanitation, environment, sustainability, and literacy.

The college's NSS, NCC (Boys & Girls), Youth Red Cross, and other cells actively participate in extension activities, leaving a visible impact on society. Faculty members contribute to research activities, with publications in reputable international journals indexed in global databases. With a vision of building a caring and sharing

society, Mangaldai College persists in its mission to foster academic growth, community engagement, and overall societal betterment.

2. <u>Concept and Need of Green Audit in Higher Educational Institutions:</u>

A green audit, also known as an environmental audit, in higher educational institutions serves several purposes. Its primary goal is to assess and improve the environmental sustainability practices and policies within the institution. Here's a breakdown of its need and concept:

- a. Environmental Responsibility: Higher educational institutions have a significant environmental impact due to their size, energy consumption, waste generation, and transportation needs. Conducting a green audit helps these institutions fulfill their responsibility towards the environment by identifying areas where they can reduce their ecological footprint.
- b. **Resource Efficiency**: Green audits evaluate the efficiency of resource utilization, such as energy, water, and materials, within the institution. By identifying inefficiencies and implementing measures to optimize resource use, institutions can reduce costs and minimize waste.
- c. Compliance and Regulation: Green audits ensure that institutions comply with environmental regulations and standards set by governmental bodies. This helps institutions avoid legal penalties and reputational damage associated with noncompliance.
- d. Educational Opportunity: Green audits provide educational opportunities for students, faculty, and staff by raising awareness about environmental issues and sustainable practices. It encourages the integration of sustainability principles into academic curricula and campus operations.
- e. **Stakeholder Engagement**: Conducting a green audit involves engaging various stakeholders, including students, faculty, staff, administrators, and the local community. It fosters collaboration and dialogue on sustainability initiatives and encourages participation in implementing green solutions.
- f. **Benchmarking and Improvement**: Green audits establish baseline data on environmental performance, which allows institutions to track their progress over time and benchmark against peer institutions. It enables continuous improvement by identifying areas for enhancement and setting targets for sustainability goals.

The concept of a green audit typically involves several key steps:

- a. **Planning and Preparation**: This phase involves defining the scope and objectives of the audit, assembling a multidisciplinary audit team, and developing an audit plan outlining methodologies, data collection techniques, and timelines.
- b. **Data Collection and Analysis**: The audit team collects data on various environmental aspects, including energy consumption, water usage, waste generation, transportation patterns, and procurement practices. Data analysis helps identify trends, patterns, and areas for improvement.
- c. **Evaluation and Assessment**: The collected data is evaluated against relevant environmental criteria, such as regulatory requirements, industry standards, and best practices. The audit team assesses the institution's environmental performance and identifies strengths, weaknesses, and opportunities for improvement.
- d. **Recommendations and Action Plan**: Based on the findings of the audit, the team develops recommendations and an action plan to address identified areas for improvement. These recommendations may include implementing energy-efficient technologies, adopting renewable energy sources, reducing waste generation, promoting recycling and composting, enhancing transportation alternatives, and integrating sustainability into campus policies and practices.
- e. **Implementation and Monitoring**: The institution implements the recommended actions and monitors progress towards achieving sustainability goals. Continuous monitoring and periodic audits ensure that improvements are sustained over time and that new opportunities for enhancement are identified.

Overall, green audits in higher educational institutions play a crucial role in promoting environmental sustainability, fostering campus-wide engagement, and advancing the institution's commitment to responsible stewardship of resources. Considering its importance Mangaldai College has conducted in the green and environmental audit in the campus for the year 2023.

3. <u>Criteria 7 of NAAC Assessment and Importance of Green Audit:</u>

Criterion 7 of the National Assessment and Accreditation Council (NAAC) focuses on "Institutional Values and Best Practices," which includes environmental sustainability as one of the key components. The criterion assesses the institution's commitment to promoting values such as ethical practices, social responsibility, and

sustainable development. Green audits can play a significant role in meeting the requirements of Criterion 7 by demonstrating the institution's efforts towards environmental stewardship and sustainable practices. Here's how green audits align with NAAC Criterion 7:

- a. Environmental Management Systems (EMS): Green audits showcase the institution's establishment and implementation of an Environmental Management System, which includes policies, procedures, and practices aimed at minimizing environmental impact. NAAC evaluates the effectiveness of the institution's EMS in promoting sustainable development and mitigating environmental risks.
- b. **Compliance with Environmental Regulations**: Green audits demonstrate the institution's compliance with environmental regulations and standards set by regulatory authorities. NAAC assesses the institution's adherence to relevant environmental laws and regulations as part of its evaluation under Criterion 7.
- c. Integration of Sustainability into Curriculum: Green audits highlight the integration of sustainability principles and environmental education into the academic curriculum. NAAC evaluates the institution's efforts to incorporate sustainability-related topics, research, and projects across disciplines to promote awareness and understanding of environmental issues.
- d. **Promotion of Sustainable Practices**: Green audits showcase the institution's promotion of sustainable practices among students, faculty, staff, and the broader community. NAAC assesses the effectiveness of the institution's initiatives in promoting energy conservation, waste reduction, water management, green transportation, and other sustainable behaviors.
- e. Engagement with Stakeholders: Green audits demonstrate the institution's engagement with various stakeholders, including students, faculty, staff, administrators, and the local community, to promote environmental sustainability. NAAC evaluates the institution's efforts to foster collaboration, participation, and dialogue on sustainability initiatives as part of its assessment under Criterion 7.
- f. Continuous Improvement: Green audits highlight the institution's commitment to continuous improvement in environmental performance and sustainability practices. NAAC assesses the institution's mechanisms for monitoring, evaluating, and enhancing its environmental initiatives to achieve sustainability goals over time.

In summary, green audits contribute to meeting the requirements of NAAC Criterion 7 by providing evidence of the institution's commitment to environmental sustainability, ethical practices, and best practices in line with institutional values. They demonstrate the institution's efforts to integrate sustainability into its operations, curriculum, and engagement with stakeholders, thereby enhancing its overall accreditation process.

4. <u>Vision of the college:</u>

Promotion of higher education, social upliftment and development of scientific temperament among the masses in the socially and educationally backward area where the college is situated.

5. <u>Mission of the college:</u>

- i) To promote higher education among the people irrespective of Caste, creed, religion and gender.
- ii) To create a scientifically tempered society which will exclude superstition and other evil practices which thrive because of ignorance.

6. <u>Environmental Policy of Mangaldai College:</u>

Mangaldai College, situated in the Darrang district of Assam, stands as a leading educational institution in the region. Established in 1951, the college has consistently fostered a high-quality academic environment for both students and faculty members since its inception. Demonstrating a commitment to environmental consciousness, the college has undertaken green initiatives aimed at preserving the natural surroundings and ensuring a pollution-free campus. The collective effort of the college administration, students, staff, faculty members, and other stakeholders reflects a shared responsibility to uphold, safeguard, and conserve the college's green environment.

7. Environmental Policy Statement of Mangaldai College:

The environmental policy of Mangaldai College is to conserve natural environment, develop sustainable solutions, promote rural and traditional technologies and control energy consumption in order

• To build awareness among students about conservation of natural resources and development of sustainable environment and maintain the green environment of the college.

- To promote plantation of endemic species to maintain ecological balance in the campus.
- To conduct green audit on regular basis to maintain and monitor the green initiatives taken by the college.
- To promote rain water harvesting in the campus using rural traditional methods.
- To make the campus pollution (air, water, soil and sound) free.
- To sensitize the stakeholders about the proper utilization of drinking water without any wastage.
- To promote and install bio-friendly dry and wet dustbins in the campus for waste collection and management.
- To minimize the use of paper and paper waste to promote paperless office environment.

8. <u>Policy Objectives:</u>

The objectives of this environmental policy of Mangaldai College are as follows.

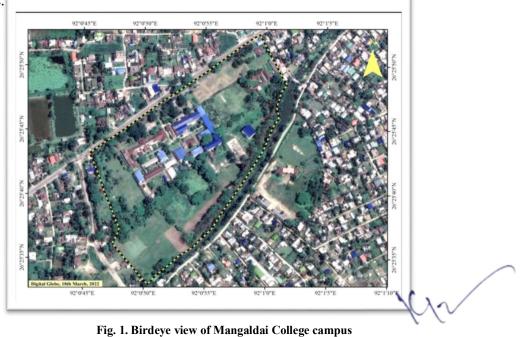
- To educate and engage students and employees on environmental concerns and sustainability.
- To promote and appreciate traditional rural technologies for conservation of natural environment.

9. <u>Objectives of Green Audit:</u>

The prime objective of this green audit is to assess the environmental quality and make strategic planning to make the campus more environment friendly. The specific objectives of this green audit are

- a. To assess the land use pattern and green cover in the campus.
- b. To assess the quality of drinking water in the campus.
- c. To assess the sound pollution level in the campus.
- d. To assess the soil composition and its properties.
- e. To assess the flora and fauna diversity in the campus.
- f. To assess the safety and security of the campus.
- g. To monitor waste generation and management.
- h. To make people aware about the environmental condition of the campus. χ_{Λ}

The above mentioned objectives were achieved through multiple approaches with scientific analysis.


a. Land Use Pattern and Green Cover:

A comprehensive analysis of Mangaldai College campus was conducted using a satellite image from Digital Globe captured on March 18, 2022, alongside ground-based surveys. The assessment focused on evaluating the campus's land use pattern and green coverage. Employing Global Positioning System (GPS) technology and advanced satellite image processing, diverse land use categories were identified and meticulously mapped. The findings reveal that the green cover of the campus extends over 50% of the total geographical area of Mangaldai College. The detailed breakdown of various land use categories and their corresponding area coverage is presented in Table 1.

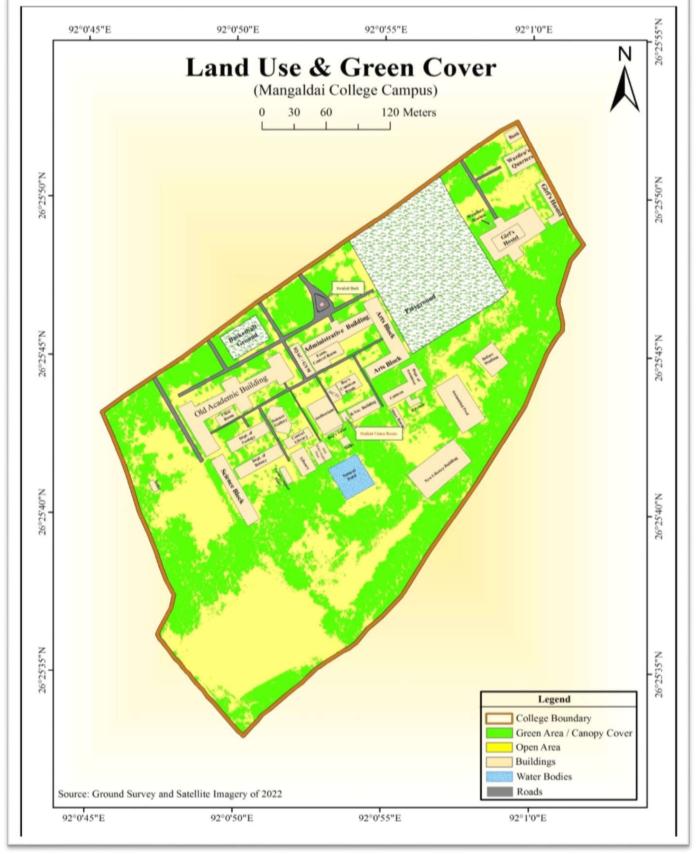

SI No	Categories	Area in Hectares	Area in sq. meter	Percentage of area cover
1	Green Area	6.76	67600	50.07
2	Building	1.8	18000	13.33
3	Roads	0.26	2600	1.93
4	Open Area	4.48	44800	34.67
5	Total Campus Area	13.5	133000	100.00

Table: 1: Land use pattern of Mangaldai College campus

The figure 1 and 2 shows the distribution of land use pattern and green cover in the campus.

Mangaldai Collegee Mangaldai

Fig. 2: Land Use Pattern & Green Cover

The land use pattern shows that the college is maintaining the green cover area and further plantation will surely enhance the quality of natural environment in the campus.

b. <u>Quality of drinking water:</u>

Ensuring access to clean and hygienic drinking water is essential for maintaining a healthy lifestyle. In light of this, Mangaldai College campus subjected its drinking water to rigorous testing by an external entity. NEOLAND Technologies, a distinguished water testing laboratory based in Guwahati, Assam, recognized by Assam Agricultural University and the Tea Board of India, conducted the water testing for the college. According to the report, all parameters of the drinking water fall within the prescribed norms and are below the standards set by IS 10500(2012) and the United States Public Health Drinking Water Standard (USPH). Both treated (Reverse Osmosis) and untreated water was tested separately to measure the anomalies if any. To further ensure the quality of drinking water, the college administration has strategically placed water purifiers in all departments and offices, catering to the needs of students, teachers, and non-teaching staff. Additionally, the college has a water supply plant within the campus, established through a Memorandum of Understanding (MoU) between Mangaldai College and the Public Health Engineering Department (PHED), Mangaldai Division. This plant not only serves the campus but also extends its water supply to the surrounding villages. Actively engaged in water conservation initiatives; Mangaldai College promotes rainwater harvesting and conducts regular awareness campaigns among students and faculty members. For detailed information on the water quality, the attached Annexure 1 and 2 contains the comprehensive water test report.

Fig.3. Water supply plant and water conservation measures

c. <u>Assessment of sound pollution:</u>

The evaluation of sound pollution within the college campus was conducted utilizing a decibel meter, an instrument designed for measuring noise or sound levels by gauging sound pressure. The findings indicate that 60% of the total geographical area experienced sound levels below 60 decibels, while the remaining 40% recorded levels surpassing 60 decibels. Table 2 provides a breakdown of the campus area covered by different decibel ranges at Mangaldai College.

Decibel Range	Area in hectares	Percentage of Area
< 49	1.33	9.85
49 - 53	1.43	10.59
53 - 56	1.5	11.11
56 - 58	2.5	18.52
58 - 60	1.46	10.81
60 - 63	2.8	20.74
63 - 66	1.41	10.44
> 66	1.05	7.93
Total Area	13.3	100.00

Table: 2: Sound decibel ranges and area covered in college campus

In accordance with the guidelines provided by the Central Pollution Control Board (CPCB), prolonged exposure to noise levels exceeding 70 dB can potentially damage human hearing. Furthermore, immediate harm to human ears may occur with loud noise surpassing 120 dB. Adhering to CPCB recommendations, it has been identified that 7.93% of the total geographical area of the college experiences sound levels exceeding 66 decibels. This area is particularly situated in close proximity to National Highway (NH) 15, which runs adjacent to the campus. The distribution of decibel

ranges and the pattern of sound pollution in Mangaldai College campus are illustrated in Figure 5.

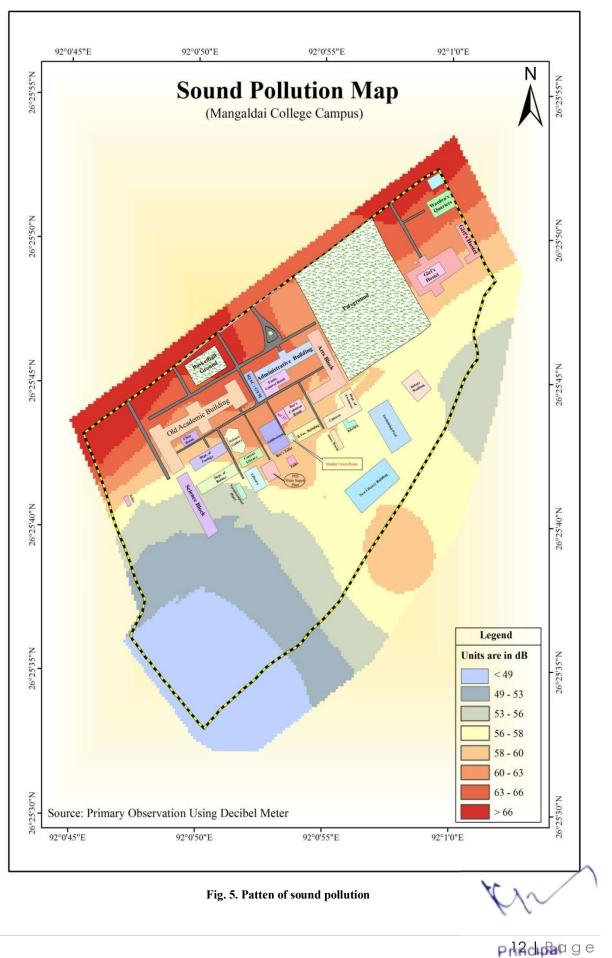


Fig.4. Data collection by Green Audit Team

Mangaldai Collegee Mangaldai

Mangaldai College

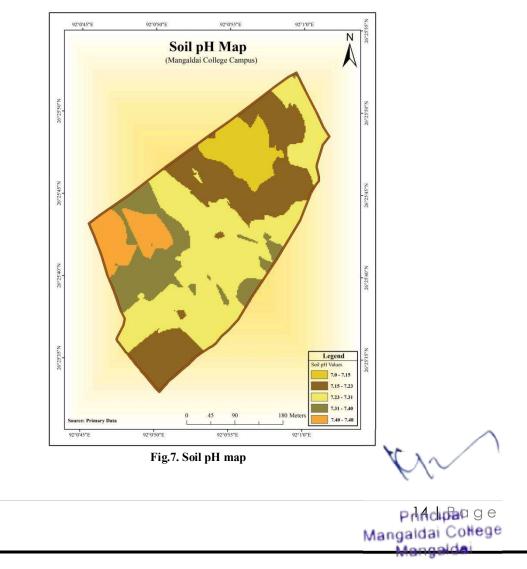
d. <u>Soil composition and properties:</u>

The overall soil composition in Darrang district ranges from sandy to sandy loam, with clayey characteristics found in low-lying areas. The predominant soil type is acidic, featuring medium to high organic carbon levels, along with low to medium phosphorus and potash content. Mangaldai College specifically exhibits an alluvial soil nature. An external entity, NEOLAND Technologies, conducted physiochemical tests on the soil parameters, and the obtained results are outlined below.

Sl. No	Particulars	рН	O.C. (%)	Av. N2 (Kg/ha)	Av. P2 O5 (Kg/ha)	Av. K2 O (Kg/ha)
1	Top Soil Location: 26.42879 92.01353	6.64	1.23 (H)	411.55 (M)	269.30 (H)	255.36 (M)
2	Sub Soil Location: 26.42879 92.01353	7.36	0.19(L)	66.38 (L)	179.53 (H)	157.92 (M)
3	Top Soil Location: 26.42839 92.01373	7.47	1.95(H)	650.52(H)	112.85(H)	137.76(M)
4	Sub Soil Location: 26.42839 92.01373	7.51	0.35(L)	119.48(L)	73.35(H)	141.12(M)
5	Top Soil Location: 26.42891 92.01503	7.40	0.43(L)	146.03(L)	56.42(H)	114.24(L)
6	Sub Soil Location: 26.42891 92.01503	7.91	0.27(L)	92.93(L)	51.29(M)	164.64(M)

Table.3. Soil testing results

 $(\mathbf{H} = \text{High}, \mathbf{M} = \text{Medium}, \mathbf{L} = \text{Low})$


The soil composition of the campus was determined through a conventional water testing method. Soil samples were collected and subjected to a water test to ascertain basic soil composition and characteristics. In this process, the heaviest components, sand, settled at the bottom, while the lighter materials, silt and clay, floated on top. The detail test report is attached in Annexure 3 and 4.

Mangaldai Collegee Mangaldai Collegee

Fig. 6. Soil composition and pH meter

Mangaldoi College exhibits a soil composition comprising approximately 30-35% sand, 45-50% silt, and 10-15% clay. The soil pH across various locations on the campus was verified and measured using a soil pH meter, and the average pH level was found to be 7. Additionally, the pH mapping of the campus was conducted using GIS tools, and Figure 7 illustrates the distribution of soil pH in Mangaldai College.

e. <u>Air quality of the campus:</u>

Situated in a rural area, the college experiences minimal hazardous pollution within the campus; however, external sources contribute to some level of air pollution. Primary sources of Greenhouse Gas (GHG) emissions on the campus include vehicles, refrigerators, air conditioners, etc. The Air Quality Index (AQI) measured in the campus falls within the range of 50-100, signifying acceptable air quality. Nevertheless, certain pollutants may pose a moderate health concern for a small subset of individuals exceptionally sensitive to air pollution.

To uphold air quality standards, the college has implemented various initiatives, such as endemic tree plantation and the installation of solar panels, aimed at mitigating the impact of external air pollution sources.

f. Floral and faunal diversity of the campus:

The floral and faunal diversity of the college campus was assessed with primary observation. The college has a rich diversity of flora and fauna. There are minimum 120 tree species are available in the campus and most of species are endemic in nature. Table 3 shows the list plant species available in the college campus.

T 11 4	T • 4	e .	•	•	11	
Table 4:	LIST 0	of tree	species	in	college	campus

Sl. No.	Scientific Name	Common Name		
1	Acalypha indica	Muktojhuri Patra-manjori		
2	Ageratum conyzoides	Gendali-bon/Gondhoa-bon		
3	Albizia lucida	Moz		
4	Alstonia scholaris R.Br.	Sotian		
5	Alternanthera philoxeroides	Pani-khutura/ Alligator weed		
6	Alternanthera sessilis	Matikaduri		
7	Amaranthus viridis	Khutura khak		
8	Anthocephalus cadamba Mig.	Kadam		
9	Artocarpus heterophyllus	Kothal		
10	Auracaria sp.	Araucaria		
11	Averrhoea carambola	Starfruit		
12	Averrhoea carambola Linn.	Kardai/ Starfruit		
13	Azadirachta indica	MahaNeem		
14	Baccaurea ramiflora	Leteku		
15	Baccaurea sapida	Paniyal		
16	Bambusa sp.	Bamboo		
17	Bauhinia purpurea	Kanchan		

Sl. No.	Scientific Name	Common Name
18	Bauhinia racemose	Kanchan
19	Bixa Orellana	Sindur
20	Butea monosperma	Palash
21	Caesalpinia pulcherima Swartz.	Radhasura
23	Calamus rotang	Bet
24	Calistemon linearis DC.	Bottle brush
25	Cassia fistula Linn.	Sonaru
26	Cedrus deodara	Devdar
27	Centella asiatica	Manimuni
28	Citrus maxima	Robab tenga
29	Cocos nucifera Linn.	Narikal
30	Delonix regia Boj.	Krishnasura
31	Derris indica	Kurus
32	Desmodium triflorum	Kodalia
33	Dillenia indica	Outenga
34	Diospyros melanoxylon	Karai
35	Drymeria chordate	Laijabori
36	Eclipta prostata	Bhringaraj/Kesaraja/Elenchi/Kehraj
37	Elaeocarous ganitrus	Rudraksha
38	Elaeocarpus floribundus	Jalphai
39	Elaeocarpus serratus	Jalpai
40	Emblica officinales Gaertn.	Aamlokhi/ Amla/ Indian gooseberry
41	Emilia sonchifolia	Bonkapahua
42	Erythrina stricta	Modar (Red)
43	Eucalyptus citriodora	Eucalyptus
44	Eugenia jambolana Lamk.	Jaam
45	Evolvulus nummularius	Bhui-ankra
46	Ficus benghalensis	Bot(Sil)
47	Ficus benjamina	Weeping fig
48	Ficus glomerata Roxb.	Dimoru(Yogyo)
49	Ficus religiosa Linn.	Aahat
50	Ficus virens	Pakori
51	Flacourtia cataphracta	Poniol tree
52	Garcinia	Thekera
53	Grevillea robusta	Silver Oak
54	Grona triflora	Creeping tick trefoil/Three-flower beggarweed
55	Hedyotis corymbosa	Bon-jaluk
56	Hibiscus rosa sinesis	Jaba 🔨

Priáclipan g e Mangaldai College Mangaldai

SI. No.	Scientific Name	Common Name		
57	Houttynia cordata	Musandari/Fish mint		
58	Justicia simplex	Water-willow/ Bheh		
59	Kigelia pinnata	Sausage tree		
60	Lagerstroemia speciosa	Ajar		
61	Leucas plukenti	Doron Kansisa		
62	Lippia nodiflora	Kurkuri bon		
63	Mangifera indica Linn.	Mango		
64	Mesua ferrea Linn.	Nahor		
65	Michelia champaca	Titasopa		
66	Mikania micrantha	Japani lota		
67	Mimosa pudica	Lajuki-lata/Nilaji-bon/Touch-me-not		
68	Mimusops elengi Robx.	Bakul		
69	Moringa oleifera	Sajina		
70	Morus alba	Nuni Mulberry		
71	Musa paradisica	Banana Tree		
72	Myriactis nepalensis	Barbori-sak		
73	Neolamarckia cadamba	Kadam tree		
74	Nosturtium indicum	Bon-behar/Bon-sariyoh/ Gonga mula		
75	Ocimum basilicum	Ram tulosi		
76	Oleaeuropaea	Olive		
77	Oxalis corniculata	Changoi-tenga/Horu tengeshi khak		
78	Paederia foetida	Skunk Vine/Bhedai lota/Paduri lota		
79	Pauzolzia hirta	Borali bhokua		
80	Peltophorum pterocarpum	Halodhiya sopa		
81	Pheonix sylvistris	Date plant		
82	Phicus glomarate	Pakori		
83	Phoenix sylvestri	Khejur		
84	Phylanthus niruri	Bhoomi Amalaki/Bhumi Amla		
85	Phynalis minima	Pokmou		
86	Pileu microphylla	Gunpowder plant		
87	Pinus khasiana	Pine tree		
88	Plectanthus patchoulii	Patchouli		
89	Plumeria rubra	Champa		
90	Polyalthia longifolia	Debadaru		
91	Polyalthia pendula	Debadaru		
92	Polygonum orientale	Lalborna		
93	Polythia longifolia	Debadaru		
94	Pongamia pinnata	Koroch		
95	Psidium guava Linn.	Madhuri aam		
96	Psidium guava Linn.	Black guava		

Principal Mangaldai Collège^e Mangald**a**i

Sl. No.	Scientific Name	Common Name	
97	Riccinus communis	castor	
98	Riccinus comunis	Castor bean/ Era gach	
99	Roystonia regia	Royal palm	
100	Samame asaman	Rain tree	
101	Santalum album	Chandan	
102	Saraka asoca	Ashok tree	
103	Scoparia dulcis	Bon chini/ Modhu-mehari	
104	Selenicereus undatus	Dragon fruit	
105	Shorea robusta	Sal	
106	Solanum nigrum	Tita-bhekuri	
107	Solanum sisymbriifolium	Sticky Nightshade/Bitter apple	
108	Spilanthes paniculata	Bhringaraj Huhuni Sak/ Marchang	
109	Spondias mombin	Omora	
110	Stellaria media	Morolia	
111	Streblus asper	Sarua	
112	Swietenia macrophylla	Mahogany	
113	Tectona grandis Linn.	Segun	
114	Terminalia arjuna	Arjun tree	
115	Terminalia chebula Retz.	Hilikha	
116	Thevetia sp.	Karavi	
117	Vateria indica	Dhup Tree	
118	Vinca rosea	Nayantara	
119	Xanthium sibricum	Agora	
120	Zizyphus jujuba	Bogori	

Besides this there are several ferns, fern-allies and bryophytes species available in the college campus. The lists of these species are in the table 5.

Tabl	e 5:	List	of bryo	phytes	and	pteridophytes	species of	the campus.

Sl No	CLASS	ORDER	FAMILY	GENUS	SPECIES
1	Ophioglossopsida	Ophioglossales	Ophioglossaceae	Ophioglossum	O. reticulatum
2	Filicopsida	Polypodiales	Polypodiaceae	Drymoglossum	D. heterophyllum
3	Filicopsida	Polypodiales	Polypodiaceae	Microsorium	M. punctatum
4	Filicopsida	Polypodiales	Polypodiaceae	Polypodium	Polypodium sp.
5	Filicopsida	Polypodiales	Polypodiaceae	Pyrossia	P. adnascens
6	Filicopsida	Polypodiales	Drynariaceae	Drynaria	D. quercifolia
7	Filicopsida	Schizaeales	Lygodiaceae	Lygodium	L. japonicum
8	Filicopsida	Schizaeales	Lygodiaceae	Lygodium	L. flexuosum
9	Filicopsida	Pteridales	Cryptogrammaceae	Onychium	O. japonicum
10	Filicopsida	Pteridales	Pteridaceae	Pteris	P. biaurita
11	Filicopsida	Pteridales	Pteridaceae	Pteris	P. quadriaurita
12	Filicopsida	Pteridales	Pteridaceae	Ceratopteris	C. thalictroides
13	Filicopsida	Pteridales	Adiantaceae	Adiantum	A. capillus-veneris
14	Filicopsida	Pteridales	Hemionitidaceae	Pityrogramma	P. calomelanos
15	Filicopsida	Dennstaedtiales	Dennataedtiaceae	Microlepia	M. speluncae
16	Filicopsida	Aspidiales	Thelypteridaceae	Ampelopteris	A prolifera
17	Filicopsida	Aspidiales	Thelypteridaceae	Christella	C. dentata
18	Filicopsida	Aspidiales	Aspleniaceae	Asplenium	A. nidus

Sl No	CLASS	ORDER	FAMILY	GENUS	SPECIES
19	Filicopsida	Aspidiales	Athyriaceae	Diplazium	D. esculentum
20	Filicopsida	Aspidiales	Nephrolepidaceae	Nephrolepis	N. chordifolia
21	Filicopsida	Aspidiales	Stenochlaenaceae	Stenochlaena	S. palustris
22	Filicopsida	Salviniales	Azollaceae	Azolla	A. pinnata
23	Filicopsida	Salviniales	Salviniaceae	Salvinia	S. cucullata
24	Sphenopsida	Equisetales	Equisetaceae	Equisetum	E. diffusum
25	Lycopsida	Selaginellales	Selaginellaceae	Selaginella	Selaginella sp.
26	Hepaticopsida	Marchantiales	Ricciaceae	Riccia	Riccia sp.
27	Hepaticopsida	Marchantiales	Marchantiaceae	Marchantia	Marchantia sp.
28	Bryopsida	Funariales	Funariaceae	Funaria	Funaria sp.
29	Bryopsida	Polytrichales	Polytrichaceae	Pogonatum	Pogonatum sp.

The college has a rich faunal diversity also. The green audit team has assessed the faunal diversity in the campus and 73 different species of arachnida, insects, amphibian, reptiles, avifauna and mammals are sighted in the campus. The table 4 and 5 shows the list and number of species sighted in the campus.

Sl No	PHYLUM	CLASS	SPECIES (Scientific Name)	
1	ARTHROPODA	ARACHNIDA	Plexippus paykuli	
2	ARTHROPODA	ARACHNIDA	Badumna longinqua	
3	ARTHROPODA	ARACHNIDA	Holocnemus sp.	
4	ARTHROPODA	ARACHNIDA	Telamonia sp.	
5	ARTHROPODA	ARACHNIDA	Plexippus sp	
6	ARTHROPODA	ARACHNIDA	Hasarius adansoni	
7	ARTHROPODA	ARACHNIDA	Evarcha sp.	
8	ARTHROPODA	INSECTA	Agriocnemis lacteola	
9	ARTHROPODA	INSECTA	Ariadne merione	
10	ARTHROPODA	INSECTA	Neurothermis fulvia	
11	ARTHROPODA	INSECTA	Papilio polytes	
12	ARTHROPODA	INSECTA	Crocothemis servilia	
13	ARTHROPODA	INSECTA	Brachydiplax sobrina	
14	ARTHROPODA	INSECTA	Ommatius sp	
15	ARTHROPODA	INSECTA	Chalybion sp	
16	ARTHROPODA	INSECTA	Oecophylla smaragdina	
17	ARTHROPODA	INSECTA	Chrysomya sp.	
18	ARTHROPODA	INSECTA	Cantharis pellucida	
19	ARTHROPODA	INSECTA	Crossocerus megacephalus	
20	ARTHROPODA	INSECTA	Hypolimnas bolina	
21	ARTHROPODA	INSECTA	Camponotus compressus	
22	ARTHROPODA	INSECTA	Amegilla sp	
23	ARTHROPODA	INSECTA	Orthetrum sabina	
24	ARTHROPODA	INSECTA	Ceriagrion coromandelianum	
25	ARTHROPODA	INSECTA	Chrysochus cobaltinus	
26	ARTHROPODA	INSECTA	Onychargia atrocyana	
27	ARTHROPODA	INSECTA	Eristalinus megacephalus	

Table 6: List of fauna

SI No 28	PHYLUM ARTHROPODA	CLASS INSECTA	SPECIES (Scientific Name) Apis dorsata
28	ARTHROPODA	INSECTA	Deudorix sp
30	ARTHROPODA	INSECTA INSECTA	Tetraponera rufonigra
30	ARTHROPODA	INSECTA	Luciola sp
31	ARTHROPODA	INSECTA	-
32	ARTHROPODA	INSECTA	Ammophila sp.
			Condylostylus sp
34	CHORDATA	AMPHIBIA	Uperodon globulosus
35	CHORDATA	AMPHIBIA	Hoplobatrachus tigrinus
36	CHORDATA	AMPHIBIA	Hylarana erythraea
37	CHORDATA	AMPHIBIA	Euphlyctis cyanophlyctis
38	CHORDATA	AMPHIBIA	Fejervarya sp
39	CHORDATA	AMPHIBIA	Microhyla sp.
40	CHORDATA	REPTILIA	Hemidactylus frenatus
41	CHORDATA	REPTILIA	Calotes versicolor
42	CHORDATA	AVES	Megalaima asiatica
43	CHORDATA	AVES	Megalaima lineata
44	CHORDATA	AVES	Dicrurus hottentottus
45	CHORDATA	AVES	Dicrurus macrocercus
46	CHORDATA	AVES	Coracina macei
47	CHORDATA	AVES	Pycnonotus cafer
48	CHORDATA	AVES	Centropus sinensis
49	CHORDATA	AVES	Acridotheres trisis
50	CHORDATA	AVES	Acridotheres fuscus
51	CHORDATA	AVES	Sturnus contra
52	CHORDATA	AVES	Halcyon smyrnensis
53	CHORDATA	AVES	Ninox scutulata
54	CHORDATA	AVES	Athene brama
55	CHORDATA	AVES	Glaucidium radiatum
56	CHORDATA	AVES	Phalacrocorax niger
57	CHORDATA	AVES	Bubulcus ibis
58	CHORDATA	AVES	Ardeola grayii
59	CHORDATA	AVES	Anastomus oscitans
60	CHORDATA	AVES	Amaurornis phoenicurus
61	CHORDATA	AVES	Metopidius indicus
62	CHORDATA	AVES	Treron phoenicoptera
63	CHORDATA	AVES	Streptopelia chinensis
64	CHORDATA	AVES	Sturnus malabaricus
65	CHORDATA	AVES	Parus major
66	CHORDATA	AVES	Aethopyga siparaja
67	CHORDATA	AVES	Zosterops palpebrosus
68	CHORDATA	AVES	Eudynamys scolopaceus

PARclipar g e Mangaldai College Mangaldai

Sl No	PHYLUM	CLASS	SPECIES (Scientific Name)
69	CHORDATA	AVES	Coracias benghalensis
70	CHORDATA	AVES	Copsychus saularis
71	CHORDATA	AVES	Orthotomus sutorius
72	CHORDATA	MAMMALIA	Macaca mulatta
73	CHORDATA	MAMMALIA	Callosciurus pygerythrus

Table: 7 Class and number of faunal species sighted.

SI No	CLASS	No of species sighted
1	ARACHNIDA	7
2	INSECTA	26
3	AMPHIBIA	6
4	REPTILIA	2
5	AVIFAUNA	30
6	MAMMALIA	2
Total		73

Greater Balloon Frog (Uperodon globulosus)

Red vented bulbul (Pycnonotus cafer) Indian Bullfrog (Hoplobatrachus tigrinus)

Spotted Munia (Lonchura punctulata)

Principal Mangaldai College^e Mangaldai

Cattle egret (Bubulcus ibis)

Asian Open billed stork (Anastomus oscitans)

Macaca mulatta

Indian Palm Squirrel

White breasted kingfisher (Halcyon smyrnensis)

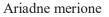
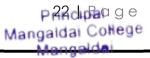



Fig. 8. Some commonly found faunal species

g. <u>Safety and Security of the Campus:</u>

The campus underwent a comprehensive safety and security audit conducted by the District Disaster Management Authority (DDMA), Darrang. The detailed report from DDMA is appended in Annexure 5 of this document. Mangaldai College boasts a secure and protected environment for students and all stakeholders. Ample open spaces on the grounds provide accommodation for students and faculty members during emergencies. The buildings are equipped with well-spaced ramps and

staircases featuring multiple entry and exit points. Proactive fire safety measures have been implemented, including the installation of an adequate number of fire extinguishers across the campus. Figure 8 visually highlights the presence of ramps, spacious corridors, fire extinguishers, and open areas within the college.

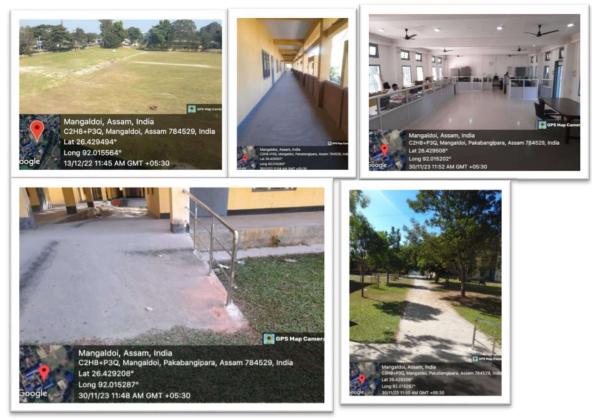


Fig.9. Ramp, Corridors, Fire Extinguisher, Open Space in the campus

h. Waste management:

The college has implemented practical measures to ensure effective waste management, incorporating a segregation system for both dry and wet waste. Numerous strategically placed dustbins are distributed across various locations on the college premises, with a bi-weekly emptying schedule to prevent overflow. Signboards and billboards have been prominently displayed in different areas to enhance awareness about waste management.To foster a green and clean environment, regular cleanliness drives are organized, involving NSS student volunteers, faculty members, and office staff. The collected waste undergoes meticulous sorting into organic and inorganic categories. Organic waste is directed to the college's vermicompost pit, while inorganic waste, along with plastic waste and ewaste, is collected by the Mangaldai Municipality Board (MMB) garbage-carrying van. The MMB and college administration have signed a Memorandum of

> Mangaldai College Mangaldai

Understanding (MoU) for the weekly collection of garbage from the college campus. This comprehensive approach underscores the college's unwavering commitment to sustainable waste management practice.

Fig.10. Waste management practices, dry and wet dustbins

i. <u>Human health and safety management:</u>

Mangaldai College is actively prioritizing the health and safety of both students and faculty members. The NCC and NSS units of the college consistently organize blood donation camps in collaboration with local NGOs. Additionally, the college has proactively participated in the Covid-19 third vaccination drive. In the academic year 2022-23, Mangaldai College conducted two vaccination drives in partnership with the District Health Department, Government of Assam

PAnclipa¤ge Mangaldai College Mangaldai

Fig. 11. Vaccination and Blood Donation Programme.

j. Green initiatives of the college:

Mangaldai College has taken up many green initiatives since its inception in year 1951. The college is giving emphasis on promotion of green energy, plantation drives in and out of the campus, tobacco free campus and make the campus plastic free.

Green Energy Initiatives:

The college has been promoting green energy by installing rooftop on-grid solar panels in the campus. The panels are installed in the administrative building of the college and the total grid capacity of the plant is 29 kWp. This initiative has been taken up in collaboration with Assam Power Distribution Company Limited (APDCL). This venture has reduced the electricity bill of the college by 18%.

Fig.12. Solar Panels of Mangaldai College

i. Plantation drives:

The college has initiated numerous plantation drives both within and beyond the campus premises. These efforts coincide with significant environmental observances such as World Environment Day, Earth Day, Biodiversity Day, World Wildlife Day, and others, during which dedicated plantation drives are executed. In an endeavor to foster a healthy environment within and surrounding the college, plantation initiatives extend to fringe areas as well. The active involvement of NCC cadets, Eco-club

Mangaldai CBHegee Mangaldai

members, and NSS student volunteers characterizes these activities. Following the plantations, meticulous post-care measures are undertaken to minimize plant mortality rates. Special attention is given to planting endemic species to preserve the ecological balance of the region.

Fig.13. Plantation drives

ii. <u>Tobacco Free Campus:</u>

Mangaldai College campus has been identified as a tobacco free campus by the Darrang District Health Society, National Tobacco Control Programme (NTCP). The campus is completely tobacco free and hoardings are placed in different locations of the campus to make people aware about it. The administration is very particular in maintaining the academic and natural environment of the college.

iii. Vermicomposting and organic farming:

Mangaldai College possesses its own vermicompost unit, which is diligently managed and overseen by the Department of Botany. This facility is dedicated to producing organic manure, which is subsequently utilized in the college campus for organic farming purposes. The plant has a production capacity of 160 kg every three months. Additionally, the college features an in-house organic farm, skillfully maintained by the NSS (National Service Scheme) at Mangaldai College. Moreover, there is an organic blue tea garden managed by the Institutional Innovation Council (IIC) at Mangaldai College.

Fig.15. Vermicompost unit and Organic Farming

iv. Mushroom Production Unit:

The Institution's Innovation Council (IIC) in collaboration with Department of Botany, Mangaldai College has established a mushroom cultivation shed in the college campus. Mushrooms offer a range of potential health benefits, and different types of mushrooms may have distinct properties. It's important to note that while there is promising research, some claims may need further investigation, and individual responses can vary. There are some potential benefits associated with mushrooms; these are nutrient richness, its antioxidant nature, immune support, antiinflammatory effect, etc. Mushroom at present is very famous and demanding at national and international market. Considering its importance and health benefits, the IIC, Mangaldai College has established a mushroom cultivation shed in its campus. The main objective of this garden is to produce raw material for mushroom production in the campus and create awareness among the students and faculty members about its health benefits of mushroom. The other objective is to generate entrepreneur who will take the initiative to market the product to the local and national level.

> Mangaldai College Mangaldai College

Fig. 16. Mushroom Production Unit

v. Rain water harvesting:

The college has taken water conservation measures through rain water harvesting. There are two units of rainwater harvesting in the campus. The rain water coming from roof tops are collected in two tanks of 1000 liter capacity and accumulated water has been used for gardening, laboratory and other uses. Similarly signboards and billboards having massages of water conservation have been put in different strategic location to make the people aware about the need of conserving water.

Fig.17. Rain water harvesting

vi. Herbal Blue Tea Garden:

The Institutional Innovation Council of Mangaldai College has established a Blue Tea garden. Blue tea, also known as butterfly pea flower tea or Clitoria ternatea tea, is an herbal tea made from the dried flowers of the butterfly pea plant. It is known for its

vibrant blue colour, which can change to purple when acidic ingredients like lemon juice are added. While blue tea has gained popularity primarily for its striking appearance, it is also believed to offer several potential health benefits for its antioxidant properties, ant-inflammatory effect, and antibiotic properties. Blue tea at present is very famous and demanding beverage at national and international market.

Considering its importance and medicinal value, the IIC, Mangaldai College has established an Herbal Blue Tea garden in its campus. The main objective of this garden is to produce raw material for blue tea production in the campus and create awareness among the students and faculty members about its health benefits. The other objective is to generate entrepreneur who will take the initiative to market the product to the local and national level.

Fig. 18. Herbal Blue Tea Garden

vii. Plastic free campus:

The college authority has taken pragmatic steps to make the campus free from single use plastic. Complete ban has been imposed on chips packets, plastic cups, plastic plates and other single use plastics inside the campus. The Internal Quality Assurance Cell (IQAC) has also taken steps to make the people aware about the plastic free campus by putting signboards and hoardings in strategic locations. Regular vigilance has been carried out by a team of faculty members and students. Fine has been imposed to those who break the rule.

Mangaldai College Mangaldai

Recommendations:

The green audit committee has made some recommendations based upon their observations and analysis. Following are the recommendations made by the committee.

a) Waste management:

The green audit committee recommends following points in waste management of the college

- Measures should be taken to make the waste management system more robust and systematic.
- Organic waste need to be converted to organic compost. Composting plant should be install in the college premises

b) Drinking water:

The committee recommends maintaining the water quality as well as the existing drinking water facilities in the campus.

c) Planned construction:

- The committee recommends making future constructions in a planned manner, so that natural environment of the college remains intact.
- Open area of the college should be maintained and class rooms should not be constructed near the National Highway 15, where sound pollution is more than 60 decibel.

d) Maintain the green environment:

- > Haphazard vehicle entry should be restricted in the college campus.
- The college has a nice green cover area. Fifty percent of the total geographical area is covered by green area and that need to be maintained for future.

e) Continuous green initiatives:

- > Initiate additional tree plantation campaigns within the campus.
- Implement eco-friendly initiatives such as expanding the solar energy plant, enforcing a complete ban on plastic, implementing an efficient waste management system, and promoting organic farming.

f) Student participation:

The committee recommends more student participation in the green initiatives of the college.

Proper awareness about the environment and its significance in human life should be carried out among the students through awareness programme and assignments.

g) Prevention of soil degradation:

- The soil type of the college is alluvial soil having 7 pH level, which is a good sign and that need to be maintained.
- The college should ban the utilization of chemical fertilizers and should promote organic composting to maintain the soil quality and reduce soil degradation in the campus.

h) Promotion of paper less technology:

The committee recommends the reduction of use of paper in the campus. Emails and other electronic mode of communication should be promoted to minimize the use of paper in the campus.

i) Conservation of available flora and fauna:

- The college has a good amount of floral and faunal diversity and that need to be maintained and conserved.
- > The college should introduce compensatory plantation in the campus.

Mangaldai CBilegee Mangaldai CBilegee

Photo Gallery:

Green Campus

Signboard showcasing environmental preservation

Survey of Flora and Fauna by Green Audit Team and Students

Endemic Tree Plantation

Mangaldai College Mangaldai College

Amrit Brikhya Andolon Plantation Programme

Plantation Drive by Eco Club, Mangaldai College

Green Campus of Mangaldai College

Blood Donation Camp by NCC COY, Mangaldai College

Principal Mangaldai College Mangaldai

Annexure 1.

Test Report of Untreated Tube well Water

NEOLAND Technologies

Soil, Water, Organic Manure & Plant Testing & Research Lab. Recognised By: Tea Board Of India, Govt. Of Assam & A.A.U IN FRONT OF DOORDARSHAN KENDRA R.G BARUAH ROAD, GUWAHATI - 781024, ASSAM.

Results of ahalysis of water sample:-

Water sample supplied by:

Principal. MANGALDAI COLLEGE, Vill : Upahupara, Dist : Darrang.

No. of water sample: 1

98540-33739 98640-39549 94357-46887 86383-21205 E – Mail: neoland123@gmail.com Web Site: www.neolandtech.com

Date: 2-3. [11.] 2023 Ref. N.G. T. [5.] 15. [23] 2.6.9.3

SI. No.	Parameter	Value	Acceptable Value (USPH Standard)
1	pH	-6.8	6.0-8.5
2	TDS (ppm)	97	500 (ppm)
3	Iron (ppm)	0.045	<0.3 (ppm)

*USPH- United States Public Health Drinking Water Standard Note: The results are pertaining to the samples supplied. Heavy Metal Analysis:

SL No.	Test Parameters	Test Method	Unit	Requirement (Max. Desirable Limit) (As per IS	Result
1.	Fluoride	APHA 23 rd Edition 4500 F-D. SPADNS Method	mg/l	1.0	0.59
2.	Arsenic	IS 3025 :1988(Part 37) Reaff 2003	mg/1	0.01	0.005

Microbiological Analysis :

SL No.	Test parameters	Test Method	Requirement (Max. Desirable Limit) (As per IS 10500:2012)	Results
1.	Coliform Bacteria	APHA-9221B(23rd Edition)	in250ml	Absent
2.	Escherichia coli	APHA-9213/3a(23rd Edition)	in 250ml	Present

Dr. H. Goswami. Retd. Soil Scientist. (TRA) NEOLAND Technologies, Guwahati-24.

NEOLAND TECHNOLOGIES Opp. Doordarshan R.G. Baruah Road, Gau-24

Practipad g e Mangaldai College

Annexure 2.

Test Report of Treated RO Water :

NEOLAND Technologies

Soil, Water, Organic Manure & Plant Testing & Research Lab. Recognised By: Tea Board Of India, Govt. Of Assam & A.A.U IN FRONT OF DOORDARSHAN KENDRA R.G BARUAH ROAD, GUWAHATI - 781024, ASSAM.

98540-33739 98640-39549 94357-46887 86383-21205 E - Mail: neoland123@gmail.com

Web Site: www.neolandtech.com

Date: 27/11/2023.

Ref: NLT/S/15/23/2698

Results of analysis of water sample:

Water sample supplied by

Principal, MANGALDAI COLLEGE Vill: Upahupara Dist: Darrang

Sl. No.	Parameter	Value	Accepted Value * (USPH Standard)
1	pH	6.5	6.0-8.5
2	TDS (ppm)	94	500 (ppm)
3	Iron (ppm)	0.035	<0.3 (ppm)

*USPH - united States Public Health Drinking Water Standard Note: The results are pertaining to the sample supplied

Heavy Metal Analysis

SI. No	Test Parameters	Test Method	Unit	Requirement (Max. Desirable Limit) (As per IS)	Result
1	Fluoride	APHA 23 rd Edition 4500 F-D SPADNS Method	mg/1	1.0	0.48
2	Arsenic	IS 3025:1988 (Part 37) Reaff 2003	mg/1	0.01	0.003

Microbiological Analysis

Sl. No	Test parameters	Test Method	Required (Max. Desirable Limit) (As per IS 10500:2012)	Results
1	Coliform Bacteria	APHA-9221B (23 Edition)	in 500 ml	Absent
2	Escherichia coli	APHA-9212/3a(23 rd Edition)	In 500 ml	Absent

V

Alehr Dr. H. Goswami. Retd. Soil Scientist. (TRA) NEQLAND Technologies, Guwahati-24.

NEOLAND TECHNOLOGIES Opp. Doordarshan P.G. Baruan Road, Gau-24

e Gee Mangaldai Mangalda

Annexure 3.

Soil Test Report

NEOLAND Technologies

Soil, Water, Organic Manure & Plant Testing & Research Lab. Recognised By: Tea Board Of India, Govt. Of Assam & A.A.U IN FRONT OF DOORDARSHAN KENDRA R.G BARUAH ROAD, GUWAHATI - 781024, ASSAM.

Soil samples supplied by:

Principal. MANGALDAI COLLEGE, Vill : Upahupara, Dist : Darrang.

No. of soil sample: 6

98540-33739 98640-39549 94357-46887 86383-21205 E – Mail: neoland123@gmail.com Web Site: www.neolandtech.com

Date: 2.3. / 11. / 2.9. 7.3. R.F.N.F.T. [9/15/23/2693

SI. No	Particulars	рН	O.C. (%)	Av. N ₂ (Kg/ha)	Av. P ₂ O ₅ (Kg/ha)	Av. K ₂ O (Kg/ha)
1	Top Soil 26.42.879 92. 01 .353	6.64	1.23 (H)	411.55 (M)	269.30 (H)	255.36 (M)
2	Sub Soil 26.42.879 92.01.353	7.36	0.19 (L)	66.38 (L)	179.53 (H)	157.92 (M)
3	Top Soil 26.42.839 92.01.373	7.47	1.95 (H)	650.52 (H)	112.85 (H)	137.76 (M)
4	Sub Soil 26.42.839 92.01.373	7.51	0.35 (L)	119.48 (L)	73.35 (H)	141.12 (M)
5	Top Soil 26.42.891 92.01.503	7.40	0.43 (L)	146.03 (L)	56.42 (H)	114.24 (L)
6	Sub Soil 26.42.839 92.01.503	7.91	0.27 (L)	92.93(L)	51.29 (M)	164.64 (M)

Note: H= High, M=Medium & L=Low.

Note: The results are pertaining to the soil samples supplied.

Dr. H. Goswami. Retd. Soil scientist. (TRA) NEOLAND Technologies. Ghy-24.

NEOLAND TECHNOLOGIES Opp. Doordarshan R.G. Baruan Road, Gau-24

Annexure 4.

DEPARTMENT OF GEOGRAPHY

MANGALDAI COLLEGE, MANGALDAI DIST-DARRANG, P.O-MANGALDAI, PIN-784125

Phone & Fax: +91 91015 90613, +91 70021 76377(M), E-mail: geographymangaldaicollege@gmail.com

SOIL TESTING REPORT

Test Results of Mangaldoi College Soil:

Date: 17/11/2022

Soil sample collected on 14-11-2022 was put on water test to determine the soil characteristics on a basic level. Sand being heaviest lies in the bottom. Above it is Silt & Clay is the lightest material flats on top.

Durations of Test: 48 hours.

Soil Types:

From the picture, one can observe that Mangaldoi college soil is a mixture of around 30-35% Sand, 45-50% Silt & 10-15% clay.

Average Soil pH:

7

Signature of concern person Assistant Professor Department of Geography Mangaldai College Dist - Darrang Assa.n

Principal Mangaldai College^e Mangaldai

Annexure 5.

Safety and security certificate

Memo No.DDM.37/2017/ Date: 21 /11/2022

SAFETY AND SECURITY REPORT OF MANGALDAI COLLEGE

As per visual assessment, the campus of the Mangaldai College is safe where multiple entry and exits in the building are available, Fire safety measures are seen and open spaces in the ground are available in the Collage campus to accommodate students, faculty and office staffs in an emergency situation. The Water tanks are well distanced from the class rooms.

Moreover, considering the various hazards and vulnerabilities of the region, testing and analysis of the design and structures of the Collage buildings through technical expertise, installation of fire safety equiptments in the buildings as per norms and management of structural & Non-Structural Safety Measures are to be executed for a resilient safety environment of the college.

District Project Officer (DM) District Disaster Management Authority, Darrang, Mangaldai

